Support vector quantile regression ensemble with bagging
نویسندگان
چکیده
منابع مشابه
Support Vector Machine Ensemble with Bagging
Even the support vector machine (SVM) has been proposed to provide a good generalization performance, the classification result of the practically implemented SVM is often far from the theoretically expected level because their implementations are based on the approximated algorithms due to the high complexity of time and space. To improve the limited classification performance of the real SVM,...
متن کاملBagging Ensemble Selection for Regression
Bagging ensemble selection (BES) is a relatively new ensemble learning strategy. The strategy can be seen as an ensemble of the ensemble selection from libraries of models (ES) strategy. Previous experimental results on binary classification problems have shown that using random trees as base classifiers, BES-OOB (the most successful variant of BES) is competitive with (and in many cases, super...
متن کاملBagging-like metric learning for support vector regression
Metric plays an important role in machine learning and pattern recognition. Though many available offthe-shelf metrics can be selected to achieve some learning tasks at hand such as for k-nearest neighbor classification and k-means clustering, such a selection is not necessarily always appropriate due to its independence on data itself. It has been proved that a task-dependent metric learned fr...
متن کاملVector Quantile Regression
We propose a notion of conditional vector quantile function and a vector quantile regression. A conditional vector quantile function (CVQF) of a random vector Y , taking values in R given covariates Z = z, taking values in R, is a map u 7→ QY |Z(u, z), which is monotone, in the sense of being a gradient of a convex function, and such that given that vector U follows a reference non-atomic distr...
متن کاملEnsemble Methods for Environmental Data Modelling with Support Vector Regression
This paper investigates the use of ensemble of predictors in order to improve the performance of spatial prediction methods. Support vector regression (SVR), a popular method from the field of statistical machine learning, is used. Several instances of SVR are combined using different data sampling schemes (bagging and boosting). Bagging shows good performance, and proves to be more computation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Data and Information Science Society
سال: 2014
ISSN: 1598-9402
DOI: 10.7465/jkdi.2014.25.3.677